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STOCHASTIC PROGRAMMED SYNTHESIS IN A DIFFERENTIAL
GAME WITH INTEGRAL PAYOFF *

A.N. KRASOVSKII and V.E. TRET'YAKOV

The problem of assured optimal control of a system subjected to infinite
interference is formalized as a positional differential game /1/ in the
typical case of integral index of the transient quality, and is solved by
the method of stochastic program synthesis /2/, which is further developed
in the present paper, An important feature here is the functional nature
of the ancilliary stochastic construction considered that enables us to
calculate the value of the game as the quality of a properly designed
programmed stochastic maximum. Using the known value of the game, the
optimal control action is determined using the method of extremal dis-
placement to the so-called accompanying point. The results obtained here
open the way for investigating functional game problems of control in
irregular cases.

1, Statement of the problem. Consider the system
=AWz +BRlu+CHv, L, <t<? u=Q, v=R (1.1)

where f, and € are fixed instants of time, =z < E" is the phase vector of the object, u is
the control, v is interference, @ C E9, R C E" are convex compacta, and A4 (¢), B (¢), C ()
are continuous matrix functions.

Let the functional

v=vuvu4ﬁn=ajﬂuumun—y@prmm (1.2)

#

zlt, 18l ={zlt], t, <18}, t, =1t 8]

be given, where D (t) is a piecewise continuous matrix function, y(f) is a piecewise continuous
vector function, |[z| is the Euclidean norm of the vector z, p(df) is a measure which for
any segment [1,, T*] C [, 8] has the form
-
B(re D =n (v) + § nat, (v, >0 (1.3)
P Te
where N () >0, ¢, < ¢ <# is a piecewise-continuous function, and v, are points of the
segment [t,,7*] that belong to a given finite set of points specified on segments ,, 9l.
The problem is to determine the law of control which forms the action u = u[t] based on
information on the current position of the object (1.1), and ensures the lowest possible
value of the y index (1.2). 1t is then possible to come across any measurable interference
vli-l={vltl =R, t, <t <B). Thus the problem can be conveniently included in a differential
game in which the place of the second player is assigned to Nature. The input problem is
then supplemented by the problem of deriving the control law that forms the action & = vl¢]
also on the feedback principle, and ensures the maximum possible value of ¢ (1.2) on the motion
of the object,
A rigorous mathematical formulation of this game is given in /1-3/. We merely note here
that in conformity with the definition /1/ the functional ¢ (l.2) is positional, 1In this
case the value of the differential game is p° = p°(f, 2) and it has a saddle point {u® (-), 1°(-)}
which is formed by a pair of universal strategies

W)=t zre)=Q, s E, t,<t<Y, e>0)
)=t e =R 2= E" t, <t <8, > 0)
where ¢ is the parameter of exactitude, The strategies u® (-} and 1°(-) are effectively con-

structed by the method of extremal displacement of the object (1.1) to the so~called accom-
panying point, using the function p° = p° (¢, 2).
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A formula for calculating the value of the game in the case of functional v (l.2) is
given below, and expresses the coincidence of the latter in any arbitrary position {t, Z,}
with the value of the properly designed stochastic programmed maximum,

2, Explanatory example., Suppose the object moves along the horizontal axis ¢
under the action of a thrust u and interference v (e.g., the force of the wind), in accordance
with the differential equations

=y oz =utor | u|<hy [v]Sh SIS 2.1

Wwhere z; =1 is the coordinate and =z, ={ is the velocity of the object. Let the instants

vy & (ty, 9),vs & (v, ) and the points '(;, §, i; be indicated on the { axis., It is required to
determine the control effort so that the object (2.1) is, at instants v, and v,, as close as
possible to the points ¢{, and 'f,, respectively, and at the instant ¥ as close as possible to
the points {;, having then a low velocity z,[8} Moreover the object is to move in the time
interval (v, v, at the velocity =z {f] that is close to the specified «¢= ({3 — {)/(vy — V).

Let us assume that the deviation from these requirements incurs the penalty

\,

‘/!
Y= [ B[] — G+ o ] — B+ i G (8] — Lo+ 22 [81) + i § (o161 — et | (2.2)
vy i
where u>0,i=1,...,4 are weighting factors.
Let the initial position be t,& [ty 8], t, < vy, 214 = {4 23 = L. It is natural to formulate

the problem of the optimal strategy u® (-) = u°(t, z;, 75, &) which will ensure the lowest possible
value of the index ¥y (2.2). However, that index takes the form of the functional y (1.2),
(1.3), if we assume

sl ={z [t], 2 (]}, p (%) =y, B (Ve) = tg, B (D) = pgi N (D= pq, L= vy, V),

NO=0,t€ (b, BINVL vl v (0= (O 0 O =L < IS v () =
Lo i<tV 3O =ly W<ISHpO=c, tE= (v, %), RO=0, t=

[0, 8]\ (viy va)
1 0 00
D(t)=u0 0” Lt D(t)=“0 1”, v <t < Ve
10 1 90
D(v=>=l|0 0"; D(t)="0 1" Vet < B

and supplement the definition of y (2.2) for values t,>v,, following the method of introduc-
ing the differential game for a positional functional,

The required optimal strategy u® = u° (1, 2, 7y, &) exists, according to /1/. If the motion of the
object (2.1) is formulated on the basis of this in a discrete scheme with a step not exceeding §> 0, it
ensures for any interference v(-l1={v[t]|< h, t, <t<{8} a value of y (2.2) not greater than
0° (tas Z1us 298) + %, Wwhere x>0 1is arbitrarily small, when & and § are fairly small.

3. The stochastic programmed maximin. Let us fix some arbitrary position  {,,
Teh te = by, 8], 2, &= E*, select the partitioning Ay {t;}, t; = ty, t; < tjn, s =8¢ of the segment

{z,, 81, and attach to them a set of random quantities §;,j=1,...,k each of which is
uniformly distributed over the half-interval O <(§;<(1. Each set {§,;, ..., §)} may be treated
as an elementary event ® from the probability space {Q, F, P}, where Q = {0} is a unit k-
dimensional cube in space {%,, ..., &}, F is a Borel o-algebra for that cube, and P (B),

and B e F is the Lebesgue measure on that cube /4/.
We call the vector functions u(-)={u({f, 0)=0Q, t, <t<? 0=Q} and v () ={v({ o) =

R, t, <t<?® o=Q} specified in the half-intervals [t;, ti,), j =1, ..., k by the equations

u(t, @) =ult, & ... &l vt @) =vit, &, ..., &l 3.1)
in which the functions u = ult, §,..., &) and v =vlt &, ..., ;] are Borel measurable over the
totality of arguments ¢, &, ..., §;, the stochastically non-predicting programmes u () and

v().

Consider the stochastic differential equation
w=AOQw+BOult, o+ CHvE o), wit =2z, (3.2)

where {u (-), v(-)} is some pair of programs (3.1). The solution of this equation is given by
the Cauchy formula
t

wit,o,u(-),v() =Xt ty) 2, + X (L, DB (D (v, 0) + (3.3)
13

Cv(t,o)ldr, b, TP 0=

where X (¢, t,) is the fundamental matrix of the respective homogeneous differential equation.
In consequence of (3.1), when ¢ <t < t;,, the following equations hold:
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w(t, o, u(:),v()=wlt, &, ..., Ej v (), v(-) (3.4)

where the functions on the right side are Borel measurable over the set of arguments &, ..., §j.
The functions w (-, u (-), v(-)) (3.3) may be considered as elements of a Hilbert space
L@ {[z,, 8] x Q} of random functions /5/ with the scalar product

@0 (), w0 () = § § @000, 0)p(d) P (do) (3.5)
Q [iy, 0]

and the norm

fo()=(§ § lw@o)pp@nP@s)”

Q (1, 9]

where <(w®.w®> is the scalar product in E™
For a given initial position {t,, z,} and fixed partitioning A, = A,{{;} we determine the
stochastic programmed maximin as the quantity

p(ts: zur Ay=supmin (§ § |D@yw e, (3.6)
() uw) g1, 0]

0 u (), v () —y @) Fp @P (o))

We assume that the partitioning A, satisfies the condition max; (4 — ;) << 6 (k) = [8 —t,)/k.

Theorem. Whatever the sequence of partitioning {Ay, k=1, 2, ...} the limit
’}im P (tey Zyo Ay) = p* (L, z,) 3.7

exists, which is independent of the selection of the partitioning, and agrees with the value
of the differential game p°(¢,, z,) whatever the position of {t,, z,}.

4. The subsidiary quantities., The proof of the theorem consists of several steps.
We select the partitioning A, {f;} and assume that * =1¢, is one of the points of this
partitioning. We fix in the half-interval [¢,, *) a pair of measurable functions

ull=ultl-1*)={uld =0, t, <t L t*}
vill=vigl i) ={witleR, 1, <t<t*}
which we shall call actions. Consider the set U [t*] = {u (-)} of stochastic non~-predicting

programs u (-), each of which is composed of fixed wu{-] and any arbitrary stochastic non-
predicting program (3,1) of the form

u*(tv (o)=u[t, §r9~"7 g]]O ti<t<tj+11 j=r7---7k

such that w(-) = {ul-], u* (-)}. We similarly construct the set V[*]= {v () = {v[-1, v* (-)}}.

Let I()={l( o) t, <t <P, 0 =Q} be an arbitrary element of space L® {[z,,8]x Q)
corresponding to the partitioning Ay. We denote by LI[f*] the set of elements I(-) of the form
Ht,o)={t, & ..., &), ., <t<®, 0o=Q} constrained by the condition

(§.5, 1p@ieore@ pa)" <t (41

Let w (-, u (). v(-)) Dbe the motion (3.3) generated by some pair of programs u (-)e U [t*],
v(-)= VI{*] and let
wh ('1 u ('), v ()) = {w(l) (tv o, u (')v v(')) =D (t)[w (tv ®,
u() v() —y @), te <t <H 0=Q}

Let us take some element [ (-)& L [t*] and consider the scalar product  (w® (-, u(-), v (-)),
(), where ()= {(O(F @)=DEI{ ), t,<t<H 0= Q). By (3.3) and (3,5) we have

@® (- u (o) = § Do) D)X t,) 2, (d) P (do) + (4.2)
2 {t,. 0]

H
(S ]<D(t)l(t,co)- §DOX DB @®uE, )+ C(1)v(r, )] drdp(dl) P (do)—
139 ‘

Qre,, o

ey

DOt 0) - D)y )y p(de) P (do)

Q [i,. )



646

We change the order of integration with respect to u(df) and dt in the second term on
the right side of (4,2), and put

GB)=D ODW, M o)) =m) (4.3)

Pled= § X(0G@m@E @
fr. 91

Pk, =M § XE06@InE, . Bl@)E, . 5 (4.4

[z, 01

where M {...} is the expectation and M {...|...} is the conditional expectation. The prime
denotes transposition. Taking into account the program structure u ()= UI[t*], v(-)sVIit*i
and the notation (4.3) and (4.4), we obtain

(W0 (-, (), 0 (), 10 (1)) = (P [£,]- 74> + (4.5)
t*
§ Wi (B@a+C@v)yde+
iy
kit
DI KT TG ETUL N
J=T 7

COvint,... . Lnydr— § <GOmE) -y @)@

[tlv

Functions Y}, f, <o <<t Yl &, .. L L <t <<tj, j=r..., k are piecewise
continuous in T, and according to (1.3) may have first-order discontinuities only at the
points T = v, The functions +¥Ir, &, ..., ;] are measurable over the set of arguments T, §,
.o By For the functions v [t] in any interxval (r,, t*) Clt,, t*] that does not contain its
points of discontinuity we have the estimate

[ [t*] —¢ {1, | < g lv* —1,]7:, g = const (4.6)
We introduce, based on (4.5), the quantity
% (2] =% (t,, z,, %, wltl-1¢%), vit, [-1¢%), 4.7
Akr{f (N=CP[t] -z +
 vivl- B@ul + Cunydr+

te

ki1
> 2 M (max min (P [%, &, &1 (B(Du +
j=r 1 v=R u=

Croprdr— § GOm@®-y@>p@n
{t., 9]

Owing to the properties of the functions (4.3) and (4.4), the quantity x [t*] has been
correctly defined. The same properties enable us to establish for the quantity % [t*], when
* =t,, the following equations:

%{t,] =Y [ta] 2> + (4.8)
K titr
2 S M {max min (P [1, &1, ... 5] - (B(Du +
=1 i &R usQ
cmwprdr— § @Om@)-yepr@n=

max min (w® (-, u(-), v (), I ()
v(-)  u(:)

Using x [t*] of (4.7), we construct the quantity
@ (%) = @ (tys Zy £, wlt L 12%), v [-12%), Ay) =
Sup % (te, z4, ulitgl-18%), vit, [-16%), A, LOD)

(4.9)

I(eLit*]
If we include here the case of ¢* =%, all components that define ¢ [¢*] when * =9
are functions only of t. Let ¢, and i, ie {1,...k — 1}, be two consequtive arbitrary

instants of partitioning Ay = A {;}.
Let us evaluate the remainder

A@; = @ [tin] — @ (#;] (4.10)
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assuming that the actions ult,[-]#.) and vl [-] #) which determine ¢ [#,,] are formed from
the actions ul¢[-}1¢) and vl [-12) that determine the quantity @[], and certain actions

ul-l=ul [-1tiy) and vl-l=vit; [[1tu). Let {I®()eLltil, s=1, 2, ...} be some maximizing
sequence for the quantity ¢ [#,]. It can then be shown that for the remainder Ag; (4.10)
the following estimate holds:
it
A< § (W0 Byuprly — (4.11)
g
min (Y@ {1} - B(t)u)]dt + ¢,(g,— 0 npu s—» 00)
usQ
Vv [1] = S XM u® [t ki, ..., Bl ed) (4.12)
[7. 0]
Because of (4.1) the functions $® [.}] =4 {f; [ 1t,], s=1, 2,... are uniformly bounded

and owing to (4.6) are equicontinuous in any interval (t,, T™) C [, tin]l that does not contain
points of discontinuity of these functions ¢ [.] (4,12). However, all points of discontinuity
of the functions $®[.], s =1, 2, ... are contained in one finite set of points. Hence, it is
possible to separate from the sequence {($©® [.], s =1, 2, ...} a subsequence that converges
uniformly in T to some function ¥*[.] at all points of the segment [f;,¢t,]. This enables

us to obtain from (4.1l) the estimate

ity
Bge< § 1" 1) B(u [e]) — min¢y* (1) B (1)uy] dr (4.13)
t; uz

which holds for any i {{,..., k¥ —1} and any limit functions *[-]. For the remainder
Ag, = @8] — g lf] we have the same estimate (4.13) as for Ag; (4.10),i=1,... k —1.

5. The properties of the subsidiary quantities. The following lemma
establishes the basic property called the u-stability.

Lemma. Whatever the two consecutive instants ¢ <{#, i {1,...,k} of partitioning
Ax{t;} and whatever the actions ult,[-Jt) and@ vlitl-lt;), for any action vI-1=vlt[-1t.) an
action ul-] = ult [-]14in) can be found such that the inequality

A =@ ltinl —o 8,10, i=1, ..., & (5.1)
is satisfied.

The following is the plan for proving the lemma. As a result of (4.13) it is sufficient
to establish the existence of the action w°[-]= {v°[t]le @, 5 <1< t,,) which ensures the equation
41
§ (v [x]-B(x)w* [x]> — min ¥ [5]-B(x)wp) de =0 (5.2)
t; =

To construct this action u«°{-] we use the theorem on the fixed point /6/. The set of all
possible actions (-] is bounded, convex, and weakly compact in L® {;, %,1)}- When the action
v[-] is fixed, to each action u[-le U there corresponds a set ¥* (u{-]) of limit functions
Prl)={(p*is), i < 1< t;,,) that are uniformly bounded and, because of (4.6), equi-continuous
in any interval (r,,7*) C[#,¢;,,) that does not contain points of discontinuity of the functions
$*[-1. Hence the set ¥* (u[-]) belongs to some convex compactum ¥ in the space L@ {1, 1,,)).
Moreover, it can be shown that the set ¥*(u[-]) is convex and changes strongly semicontinuously
from above on the inclusion relative to the change of ul-], which is weakly estimated.

(Note that the property of convexity is ensured here by the stochastic properties of the
structure) .

» We place in correspondence to each function y([-]=¥ the set U* Wl-1) of measurable
functions u*[-l={(v*Irle .t <1< t;,,) selected (according to the theorem on measurable choice)
from the condition

$ [T]-B (1) u* [t]> = min <P [t]-B (v) w (5.3)
usQ

The set U* ($[-]) contained inU is convex and changes weakly semicontinuously from above on
the inclusion relative to a changeof ¢I[-] that is estimated strongly. Let us now consider the
mapping of the set § = {s[-]} of all possible pairs s[-]= {u[-], $[-hhul-lJ=lU,d[-]e¥ into them-
selves, setting in correspondence to each pair :l-Je S a non-empty set @ (s[-)C S of similar
pairs s*Ll={u*[-L.y* [-]}), e*[- e U*®@I[-]), P* =P (ul-)). The set S is convex and weakly
closed. The set @ (s[{-]) is convex weakly varying sequentially from above on the inclusion
relative to the variation of s[-]. Then in accordance with the theorem on the fixed point, an
element s°{-]& § exists such that [ ]Je® (°[-]), i.e. a »° [-] and ¥°{-] exist such that u°[.]e
U*@° ') and ¢°[-]e¥* («[-]). Hence the solution u°[-] required ensuring the equation (5.2),
is determined by the condition (5.3) in which it is necessary to set P[.]=4¢°[-]. This
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proves the lemma.
when (* =1¢,, taking into account (4,.8), we have the equation

@ lt,] = sup maxmin (@® (-, u (), v{-}), B () (5.4)
LyELlEa] o) u()
Since WO, v (), v (N NI (-, (), v{Nf- 1®(¢}], then in accordance with
the definition of the quantity p (f,, %y O4) (3.6) and condition (4.1) we have
@ [t) < sup maxmin [ w® (-, u (), v () |- PP {5.5)
{Hel{ts] o) u()
max min | w® (-, 1 (), () | = (tar Zar A0
When {* =%, in accordance with (4.5) and (4.9} the quantity ¢ [{#] has the property

Q8= sup (@O (-, ul-],v[-]),I0()= (5.6)
(yel(9) s
a1 = S]ID(t)[w(tI-—-y{tl]l’u(dt))/'

6. The stochastic maximin and the payoff of the game. we select some
partitioning sequence A, {f;}, ¢ =1, 2, ..., for which the following limit exists:

}_i_’: P (bys Ty Ag) = p* (te, Z4) 6.1)
Then for any number o > 0 a positive integer % (a) can be found such that for any q>

k {a) the inequality
ot Tar B9 <CP* (4 7)) + & (6.2)

holds.

Consider {e, A;}, the motion /1/ 2°[t, [-18] of the object (1L.1) generated from the
position {t,, #,} by the partitioning steps A, {t;}, g >k (a) of the optimal strategy ° () of
the second player and the application of a control wu [t [-]9) composed of those sections
ult; [1t4), 7 =1, ..., ¢, which, in conformity with the lemma, for actions °[¢;[-]¢;.) generated
by the strategy t°{-), ensure the satisfaction of the following inequalities:

@y Zyrlirri @ {te DG 1 [ 1) A @ (B T L B L 1P [ [T 450, A
From this chain of inequalities with j =14, ..., g and the properties (5.5) and (5.6) we

obtain
e

Pl Ta A S 01ty > @ [0 = § (D@2 11—y ®)] P (dt) (6.3)

[te, 0]
But by the property of optimal strategy @°{f, z,e) and the definition of the value of the

game 9°(f,, &,) /1/ we can indicate for any jx >0 such quantities 8(x) >0 and &, x) >0
that for any measurable application of the control ulg,[.18) = {ultl<= Q,, <t < ¥} thae inequality

¥ (2° (6 1 18]) = p° (ty, w) — X (6.4)

is satisfied so long as &< e({y) and the partition step b0 (g) of the segment [f,, 9] is less
than 8 (e, ¥). Hence selecting &< e (X) and setting g > max {k (@), [ — )8 (e, x)} in the
partitioning A, {¢;}, we simultaneously have the inequalitites (6.2} and (6.3) and, by (6.4},
the inequality
(§ 1D —y @1 F )" = Uz —% (6.5)
{te, 01 i
Equating (6.2), (6.3) and (6.5), we obtain that p° (4, 7)) <p* (tyy T4) + 2+ %, and since
o and y are arbitrarily small, if g is fairly large, we have the inequality

9° (t*v x*) < p* Ly, 3«”*) {6.6)

We obtain the opposite ineguality as follows. It follows from (6.1) that when ¢k (),
we have
Y (l*, Twr Aq) > p* (t*v .1'*) - 6.7)

By the definition of p ({,, %4, 8,) (3.6) it is possible to indicate for any [ >0 a non-
predicting stochastic program v, {-) such that whatever the non-predicting stochastic program
u (-}, the inequality

fa® (, u () v (D0 (e 2s 8g) — 8 {6.8)

holds. Then from (6.7) and (6.8) when g =k (z) we have
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Fw® (-, w(), v (NIZp* (e 24) — —1 (6.9)

In the stochastic differential equation (3,2) we put v(:) =v,(-) and construct the
sample u°[t, [-]1®, @] of the control u along the partitioning steps A, {{;} on the basis of
the optimal strategy u°(-) of the first player, assuming that when ¢ <Ct<ltu, j=1, ..., ¢

¥t L] tia, ©) = w® (4w (5, o, (), v, (+)), €)

This sample, taking (3.4) into account, can be treated as the control formed on the basis
of some stochastic non-predicting program u,°(-). The inequality (6.9) holds for that
program. But as regards the property of optimal strategy u° (¢, w, &) /1/ for any % >0 we can
indicate e(y) >0 and & (g, y} >0 such that the measurable application of interference
(including any application v, [t,[-]1#, ©) formed on the basis of the stochastic non-predicting
program u, (-)), the inequality

p(@° (2 [ 18]) < 0° (tey @) + X (6.10)

will hold, provided e <(e(x) and the partitioning step & (g) does not exceed § (e, ¥). Then,
selecting & <{ e (x) and assuming in the partitioning that A, {t;} ¢ > max {k (@), [& — £,V/8 (e,
%)}y we have besides the inequality (6,9), in conformity with (6.10), for almost applications
vy [t, [-1®, @) the inequality

( § 1Dt o0 ea)— y @I Pr@En)" <t 24+ (6.41)
[ta, 01

Averaging (6.11) over w & Q, we obtain
fw® (-, u ) vp (NP (e 28) + 1 (6.12)

Comparing (6.9) and (6.12) we have p* (f,, Zy) << 9° (fe, Z,) + %X + a4+ §, and, consequently,
P* (2, 24) < 0° (t4, 2,). Taking into account (6.6), we find that p* (¢, z,) = p° (t,, Z,). This
equation can be derived for any position {¢,, z,} and for any sequence of partitioning A, {t;}
for which the limit (6.1) exists., This limit always agrees, as proved, with the payoff of
the game p°(f,, #,). This proves that the limit (3.,7) exists and is equal to the payoff of
the game, The theorem is proved.

From that theorem and inequalitites (6.3) and (6.5) and equations (4,.,8) and (5.4) we
obtain the formula for calculating the payoff of the game,

kit
P (twr @p)=1lim  sup [CP[L,]-20d + > S M(xg‘gg(w[r,h,--.,i,-]-(B(r)u-i- (6.13)

o0 1()SL[2,) =4

C(nv)ydr — Sﬂ GBym @) -y p(d)

t.,
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