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STOCHASTIC PROGRAMMED SYNTHESIS IN A DIFFERENTIAL 
GAME WITH INTEGRAL PAYOFF * 

A,N. KRASOVSKII and V.E. TBET'YAKOV 

The problem of assured optimal control of a system subjected to infinite 
interference is formalized as a positional differential game /l/ in the 
typical case of integral index of the transient quality, and is solved by 
the method of stochastic program synthesis /2/, which is further developed 
in the present paper. An important feature here is the functional nature 
of the ancilliary stochastic construction considered that enables us to 
calculate the value of the game as the quality of a properly designed 
programmed stochastic maximum. Using the known value of the game, the 
optimal control action is determined using the method of extremal dis- 
placement to the so-called accompanying point. The results obtained here 
open the way for investigating functional game problems of control in 
irregular cases. 

1. Statement of the problem. Consider the system 

2' = A (t) z + B (t) u + C (t) u, to < t < 6, 11 E Q, u E R (1.1) 

where to and 6 are fixed instants of time, ZEE" is the phase vector of the object, u is 
the control, v is interference, QcE*, R cE’ are convex compacta, and A (t), B(t), C(t) 
are continuous matrix functions. 

Let the functional 

v = Y (2 It* I * ]@I) = (,, I*, ID V)P ItI - Y (tw P W))“’ (1.2) 
l r 

I It, l-1 61 = {z Itl, t, < t < 6}, t, E It,, @I 

be given, where D (t) is a piecewise continuous matrix function, g(t) is a piecewise continuous 
vector function, 12 1 is the Euclidean norm of the vector z, I is a 'measure which for 
any segment [z,, z*lc [&,,@I has the form 

Il(l~*,r*l)=~P(Yp)+~.?(t)dt, P(VP)>O 41.3) 
P 7. 

where q (t)> 0, t, Q t <<e is a piecewise-continuous function, and vp are points of the 
segment [r,,z*l that belong to a given finite set of points specified on segments 07 61. 

The problem is to determine the law of control which forms the action u = uitl based on 
information on the current position of the object (1.1) , and ensures the lowest possible 
value of the y index (1.2). 
v[.l= {u[tlER, t*<t<<). 

It is then possible to come across any measurable interference 
Thus the problem can be conveniently included in adifferential 

game in which the place of the second player is assigned to Nature. The input problem is 
then supplemented by the problem of deriving the control law that forms the action J'= v It1 
also on the feedback principle, and ensures the maximum possible value of y (1.2) on the motion 
of the object. 

A rigorous mathematical formulation of this game is given in /l-3/. We merely note here 
that in conformity with the definition /l/ the functional y (1.2) is positional. In this 
case the value of the differential game is p" = p"(t,s) and it has a saddle point {u" (.), v"(.)} 
which is formed by a pair of universal strategies 

u” t.1 = {u” (t, 5, E) C Q, x E E”, t, < t < 6, E > 0) 

uD (*) = iv0 (t, x, E) E R, z E E”, t, < t < 6, E > 0) 

where E is the parameter of exactitude. The strategies u'(e) and v"(a) are effectively con- 
structed by the method of extremal displacement of the object (1.1) to the so-called accom- 
panying point, using the function p0 = p@ (t, 5). 
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A formula for calculating the value of the game in the case of functional y (1.2) is 
given below, and expresses the coincidence of the latter in any arbitrary position {t*, x,} 
with the value of the properly designed stochastic programmed maximum. 

2. Explanatory example. Suppose the object moves along the horizontal axis i 
under the action of a thrust u and interference u (e.g., the force of the wind), in accordance 
with the differential equations 

21' = Z*, IO' = u + c, I u I Q J.,, I VI d hv to B t d 6 (2.1) 

where z,= E is the coordinate and z1 = t' is the velocity of the object. Let the instants 
v1= &JVe),% = (% 6) and the points '&,&,F& be indicated on the 5 axis. It is required to 
determine the control effort so that the object (2.1) is, at instants v1 and v*, as close as 
possible to the points t, and 't,, respectively, and at the instant 6 as close as possible to 
the points l& having then a low velocity +*[$I. Moreover the object is to move in the time 
interval (vl,vt) at the velocity 3% Id that is close to the specified c = (fa - 51)/(v* - 9). 
Let us assume that the deviation from these requirements incurs the penalty 

Y = jrt (21 [VI] - 51)~ + ~a (~1 bzl - G)* + ~a [@I [*I - is)* + a* [till + PP s’ (~2 ItI - 4’ dt 1”’ (2.2) 
PI J 

where pi>O,i=i,..., 4 are weighting factors. 
Let the initial position be t, = Ito. a, t, <V*, 2,. = 5*, 51. = El’. It is natural to formulate 

the problem of the optimal strategy u'(.) = u~(~,z,,+,,E) which will ensure the lowest possible 
value of the index y (2.2)‘ However, that index takesthe form of the functional Y (1.2), 
(1.3), if we assume 

and supplement the definition of y (2-2) for values t* > VI, following the method of introduc- 
ing the differential game for a positional functional. 

Therequiredoptimalstrategy ~0 = uO(t, z$,z,, @exists, according to/l/. Ifthemotionofthe 
object (2.1) is formulatedonthebasis of this inadiscretescheme withastepnotexceeding 6>0, it 

ensures for any interference u[.l- {I v[t] I(&, tcft<6) a value of y (2-2) not greater than 

P" ct.9 21,. 21.) + x9 where x>O is arbitrarily small, when e and 6 are fairly small. 

3. The stochastic programmed maximin. Let us fix some arbitrary position {t*, 
2*), t, E [to, e1, z* E .P 3 select the partitioning Ah,{t,), t, = t,, ti < tj+l, &+I = 6 of the segment 
[t,, 81. and attach to them a set of random quantities f,,i = 1, . . ., k each of which is 
uniformly distributed over the half-interval 0 < Ej < 1, Each set {Et, . . . . SK} may be treated 
as an elementary event w from the probability space (8, F, P}, where 52 = {o} is a unit k- 
dimensional cube in space (&, . . . . Sk}, F is a Bore1 u-algebra for that cube, and P(B), 
and BEF is the Lebesgue measure on that cube /4/. 

We call the vector functions u(.) = {u(t, o)EQ, t, < t <S, w E 9) and u(e) = {u(t, o)C 
R, t*.< t <@, o E Q) specified in the half-intervals [tj, tj+l), j = 1, . . ., k by the equations 

U (t, 0) = U [t, 51, . .v Sjl, U (t; 0) = V it, El3 a * .3 Ejl (3.1) 

in which the functions u = z~[t,&,...,E~] and v = v [t, &,...,Ej] are Bore1 measurable over the 
totality of arguments t, &, . . . . El, the stochastically non-predicting programmes u (a) and 

v (*). 
Consider the stochastic differential equation 

1~' = A (t) w + B (t) u (t, co) f c (t) v (t, o), w it,] = x+ (3.2) 

where {u(.), v(.)} is scme pair of programs (3.1). The solution of this equation is given by 

the Cauchy formula 

where X (t, t*) is the fundamental matrix of the respective homogeneous differential equation. 
In consequence of (3-l), when tf C< t < tj+l, the following equations hold: 

1L‘ (t, w, u (. ), v ( * )) = x (b t*) x* t &r)[B(T)U(T,(I9+ (3.3) 

C(r)v(T,0)1dr,t*<.<6 & 



wherethefunctions 
The functions 

L'Z) {It,, 61 x 52) of 

and the norm 
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W (t9 09 s (*)9 V (')) = W it7 El7 . * *I Ejv u (')* V (')I (3.4) 

on the right side are Bore1 measurable over the set of arguments El, . . . . E,. 
w(., u(m), v(m)) (3.3) may be considered as elements of a Hilbert space 

random functions /5/ with the scalar product 

(w(1) (.),I@ (.)) = s s (w(l) (t,o).d*) (t,o)) p (dt) P (do) (3.5) 
Q It..61 

llw(*) It= (~IrS,,lw(t,w)I*p(dt)P(do))~’ 

where (w(l) . w(2)) is the scalar product in E". 
For a given initial position {t*. z*} and fixed partitioning Ak = Ak{ti} we determine the 

stochastic programmed maximin as the quantity 

P(~,.~*,A~O=~~~~:(~S~~S~,ID(L)[W(~. (3.6) 

0, u (a), v (a)) - y (Ql,rl (&)P (do))Q 

We assume that the partitioning Ak satisfies the condition maxi (tj+l -ti)< 6 (k) = Itt -~t,l/~. 

Theorem. Whatever the sequence of partitioning {Ak, k = 1, 2, . ..) the limit 

lim P (f,, I*, AA = P* (tL1 G) (3.7) 
kdc0 

exists, which is independent of the selection of the partitioning, and agrees with the value 
of the differential game p'(t,, I*) whatever the position of {t,, z~). 

4. The subsidiary quantities. The proof of the theorem consists of several steps. 
We select the partitioning Ak (t]) and assume that t* = tr is one of the points of this 
partitioning. We fix in the half-interval It,, t*) a pair of measurable functions 

u 1.1 = u ItJ.1 t') = {u It1 E 0, t, Q t <P) 
v f-1 = v It*[-I P) = {v 111 E R, t, < t < t*) 

which we shall call actions. Consider the set U it*] = {u(e)} of stochastic non-predicting 
programs u (.), each of which is composed of fixed u[.) and any arbitrary stochastic non- 
predicting program (3.1) of the form 

u* (t, 0) = u it, E,, . . ., 511, tt < t < tj+l. i = rr . . -, k 

such that U (*) = {u [*I, u* (.)). We similarly construct the set V [PI== {v (-) = {v 1.1, v* (e))). 
Let Z(e)= {2(t, o), t, Q t<fi, o ER) be an arbitrary element of space 

corresponding to the partitioning At.’ We denote by 
L@) {[t,,fu x Q) 

1 (t, 0) = (1 It, 5,, . . .( &I, 1, <t<,<, OI E 52) 
L[t*l the set of elements l(.) of the form 

constrained by the condition 

Let uy (a, 
V(.)EVlPl 

u(.). v(s)) be the motion (3.3) generated by some pair of programs U (.) E U [t*l, 
and let 

WC') (., u (a), v (.)) = {w(l) (t, o, .U (.), v (.)) = D (t)Iw (t, o, 

u t.), v (.)) --Y @)I, t, Q t <es, 0 EQ) 

Let us take some element 
1"'(.)), 

1 (.)EL it*] and consider the scalar product 
where Z(1) (.) = (10) (t, 0) = D W 0, w), t, < t < 6, OI E 9). 

W) (-7 u (*It v (-)I, 
By (3.3) and (3.5) we have 

(~'"(.r~(.),v(.)),z(~)(.))=S s <D(t)t(t,o).D(t)X(t,t,)z,)~((dt)P(do)+ 
Q VW dl 

(4.2) 

s s <D(V(Q+ SD(t)x.(t,r)Is(~)U(~,O)+ c(T)V(T,O)ldt?lL(dt)P(do)- 
Q V..Ql 1. 

5 1 (D(t)l(t,o). DP)yW~WP@~) 
Q L 61 
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We change the order of integration with respect to P (dt) and dz in the second term on 
the right side of (4.2), and put 

G (t) = D’ (t) D (4, M {I (t, co)) = m (t) 

'II bl = S x' (t, t)GW m (4 P WI cc Ql 
(4.3) 

(4.4) 

where M{... } is the expectation and i&f {. . . I . . .} is the conditional expectation. The prime 
denotes transposition. Taking into account the program structure u (*) E ff [t*l, v (.) E v It* I 
and the notation (4.3) and (4.4), we obtain 

(W”‘(.,U(.),V(.)),l(‘)(.))=(~I)Lt*l.x*) + 
t= 

S (9 1~1 . (B (4 u [Al + C (3 v W> dT + 
t. 

k ‘j+l 

(4.5) 

2 S M(<~[~,~,...,S~I.(B(?)~~IT,~,...,~~I + 
j-r t, 

C(r)~Ir,5,...,EjI)>}dz- S (G(t)mW~yWpW) 
v.. a1 

Functions (I 171, t, G '5 G t*; $:[T, E,, . . ., &I, tl < z < tj+lt j = r,. . ., k are piecewise 
continuous in r, and according to (1.3) may have first-order discontinuities only at the 
points z = vp. The functions 9 [T, &, . . ., Ll are measurable over the set of arguments t, E,, 
. . .( 51. For the functions 9 Lrl in any interval (z,, r*)~[t,, t*l that does not contain its 
points of discontinuity we have the estimate 

I ql h*l -q It,1 I Q g [z* - r,l"., g = collst 

We introduce, based on (4.5), the quantity 

(4.6) 

x it*1 = x @*, x*, t*, 11 12,l.l t*), v It, I.1 t*j. 

Akti(*))=<q[t*l .x*>+ 
t* 

S ('9 1~1 . (B Cd u ItI + C(T) v LrlD dt + 
t, 

k ‘j+l 

,; F 

i 
M (-of <Ij, IT, 57, . . . , $1 .(B (4 r~ + 

C(r)vD)dt- S <GO)mW~yW~W 

(4.7) 

v.. 61 

owing to the properties of the functions (4.3) and (4.41, the quantity %[t*i has been 
correctly defined. The same properties enable us to establish for the quantity xIt*l, when 
t* = t +r the following equations: 

x&J =<IJ[t*l*x*> + (4.8) 
k 'j+l 

2s 1 
1 

M(III~~II~<'#[T,&~. . .EjI . (‘(T)U + 

C(T.)V))} dt- 1 (G(t)m(t). ~(t))~(dt)= 
IL. 01 

maxmin(w(l)(.,~(.),v(.)),1(~)(.)) 
M.) U(.) 

Using x [t*l of (4.71, we construct the quantity 

cp It*1 = cp @*, x*, t*, u [t,[.l t'), v b,[.l t*). Ak) = 

SUP x @*. x*, u [&[.I t*), v [t, I.1 t*). Akr 1 (‘)I 

I(.EL[L'l 

(4.9) 

If we include here the case of t* =6 all components that define 'p [t*l when t* =6 

are functions only of t, Let ti and ti+l, i'E 11, . . .7 k--1}, be two consequtive arbitrary 

instants of partitioning Ak = At iti). 
Let us evaluate the remainder 

Am, = 'P [li+J -'P Iti1 (4.10) 



647 

assuming that the actions II [t,[.l &,I) and v it.,, I.1 &+I) which determine cp [tall are formed from 
the actions u [t,[.] ti) and v [t, f-1 tl) that determine the quantity cp M, and certain actions 

u 1.1 = u [t, 1.1 ti+r) and v 1.1 = v [lf 1.1 ti+l). Let {Z@) (e) EL Iti+,], s = 1, 2, . . _) be some maximizing 
sequence for the quantity cp[ti+lj. It can then be shown that for the remainder Acp, (4.10) 
the following estimate holds: 

‘i+l 

ATi,< 5 I(W”‘I~l * B(T)u[TI>- (4.11) 
‘i 

min ($(*) [z] . B(T) u)] dr + E, (Ed + 0 npr s+ 00) 
UG.p 

~p@‘[~l= S X’(1,t)G(t)M{l”‘[t,Ei+l,...,E~llr(dt) (4.12) 
17. Ql 

Because of (4.1) the functions o@) 1.1 =g@) [Ii I.1 ti+xI, s = i, 2,. . . are uniformly bounded 
and owing to (4.6) are equicontinuous in any interval (r*, T*)C [tt, ti+lI that does not contain 
points of discontinuity of these functions $@) i-1 (4.12) 0 However, all points ofdiscontinuity 
of the functions q@) 1.1, s = 1, 2, . . . are contained in one finite set of points. Bence, it is 
possible to separate from the sequence {@(@[.I, s = I, 2, . ..) a subsequence that converges 
uniformly in r to some function -$*[*1 at all.points of the segmen; [&,ti+,]. This enables 
us to obtain from (4.11) the estimate 

which holds for any i E (1, . . . . k -1) and any limit functions ** [a]. For the remainder 
_. 

Ag+ = cp[6] --lLtkl we have the same estimate (4.13) as for Acp, (4.10), i = 1, . . ., k - 1. 

5. The properties of the subsidiary quantities. The following lemma 
establishes the basic property called the u-stability. 

Lemma. Whatever the two consecutive instants G < ti+~. i E (1. . . . . 
Ak{tj} and whatwer the actions 

k) of partitioning 

u [t,L*lt*) and v lt,J*]t& for any action v I.1 = v Iti l-1 tt+l) an 
action u [.I = u [t* [.] ti+l) can be found such that the inequality 

is satisfied. 
A~pt = CP [k+lI --cp ItJ < 0, i = 1, . . ., k (5.1) 

The following is the plan for proving the lemma, As a result of (4.13) it is sufficient 
to establish the existence of the action u"[.] = (u'[~],~Q,ti<~<t~+~) which ensures the equation 

'i+l 

5 
[tW[~].B(r)u"[~]> yni;cP [~l.BWwld~ =0 (5.2) 

‘i 
TO construct this action vO[.] we use the theorem on the fixed point /6/. The set of all 

possible actions u[.] is bounded, convex, and weakly compact in L(*'{[ti. ii+J). When the action 
V i-1 is fixed, to each action u 1.1~ U there corresponds a set P ((I[.]) of limit functions 
rP* I.1 = (9’ ITI* ti G 7 < ti+l) that are uniformly bounded and, because of (4,6), equi-continuous 
in any interval (r,,s*) ~[ti,t~+~l that does not contain points of discontinuity of the functions 
V [.I. 
Moreover, 

Hence the set Y* (uI.1) belongs to some convex ccmpactum rP in the space L(*) ([ti,ti+l)). 
it can be shown that the set P(uI.1) is convex and changes strongly semicontinuously 

from above on the inclusion relative to the change of u[.], which is weakly estimated. 
(Note that the property of convexity is ensured here by the stochastic properties of the 
structure). 

. We place in correspondence to each function $[.]EY the set CP(d.1) of measurable 
functions u*[.] = (u* ITIE Q.ti fr< ti+,) selected (according to the theorem on measurable choice) 
from the condition 

O@ [r].B (7) I* 111, = s O# iT1.B (T) U) (5.3) 

The set lJ*(rp[.]) containedinu is convexandchanges weakly semicontinuously from above on 
theinclusionrelativetoa changeof rPI.1 that is estimated strongly. Let us now consider the 
mapping of the set S=(S[.]} ofallpossiblepairs s[.]= {U I-1, rp [.I), Y 1.1~ U,$J I.1 E V into them- 
selves, setting in correspondence to each pair I L.l= S a non-empty set Q, (1[.1)c S of similar 
pairs s* I.1 = (u' [.I. $9 [.I], I* I.1 E cJ* (*[.I), rp' I.1 E 'P* (U I.]). 
closed. 

The set S is convex and weakly 
The set @@[.I) is convex weakly varying sequentially from above on the inclusion 

relative to the variation of ~1.1. Then in accordance with the theorem on the fixed point, an 
element so [.]E S exists such that s" I.1 E Q, (so I.]), i.e. 
L‘* (9" 1.1) and 9" 1.1 E Y* (u' [.I). 

a u0 [.I and $" I.1 exist such that P[.]E 
Hence the solution u"L.1 required ensuring the equation (5.2), 

is determined by the condition (5.3) in which it is necessary to set q[.]=y 1.1. This 
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proves the lemma. 
When t* = t*, taking into account (4.8), we have the equation 

cp If,) =t( p~~~,lmHa; rnnlj: (w(l) (m, II (a), vf*)), I(*) (*)) (5.4) 

Since WY=, m (*)* v(a)), W (.)) < II ?JQ) (** a iv), IJ (*)) /I- II i(') (.) /I* then in accordance with 
the definition of the quantity p (t+,z*, A,) (3.6) and condition (4.1) we have 

cp [&I <~c.;JEUL1n$ n$ Ill K+) (*9 u (*L lJ (*)) II * II W (*) Ill Q (5.5) 

max min II w(l) (se u t.), Y C-1) I/ = p (t*, z+, Ad 
ot.> UC.1 

when t* = 6, in accordance with (4.5) and (4.8) the quantity cpfe] has the property 

(5.6) 

6. The stochastic maximin and the payoff of the game. we select some 
partitioning sequence A, {t,},q = 1,2, . . . . for which tht+ following limit exists: 

lim P (t,, s*, A& = P* (t., G) 
QQD 

Then for any number a> 0 a positive integer k(u) can be found such that for any 
k(a) the inequality 

holds. 

P (L $9 Aa) <P* (t*, 3,) + Q 

. . _ _._ 

(6.1) 

q> 

(6.2) 

Consider {e, Apj, the motion /I/ 9LtQl~l61 of the object (1.1) generated from the 
position (t*, zs} by the partitioning steps Ap {t,}, q>‘(a) of the optimal strategy vu(.) of 
the second player and the application of a control I( [t, f.16) composed of those sections 
u [tt [-]++I), f = 1, . .., q. which, in conformity with the lemma, for actions v" itI [*I t+1) generated 
by the strategy u" (.)? QnSUTQ the satisfaction of the following inequalities: 

tp('*, se* tj+r* m [to I*? fj+l)t V” It* [*I tj+tl- ApI < Cp (t*, I*, tj* u it* f .I fj) v’[t* t-1 tj)T Apl 
From this chain of inequalities with j = 1, . . . . q and the properties (5.5) and (5.6) we 

obtain 

PLs,,Ai\,)>:rpt,l > 'p 181 = ((*j*, I QO)[~” [tl - Y vi1 I2 CL (W)“’ (6.3 

But by the property of optimal strategy lJ" (t. 2, a) and the definition of the value of the 
game p" @,, x~) /l/ we can indicate for any x> 0 such quantities a(x)> 0 and sfe, x)> 0 
that for any measurable application of the control u [t,[.16) = (a Itl~Q,t* < t <@} the inequality 

is satisfied so long as e.< e(x) and the partition step 6 (q) of the segment It,,61 is less 
than 6 (E, x). BQnCe selecting e < e(x) and setting q> max (k(a), [@ - &,I/6 (8, x)) in the 
partitioning A, (fj}, we simultaneously have thQ inequalitites (6,Z) and (6.3) and, by (6.41, 
the inequality 

Equating (6.21, (6.3) and (6.51, we obtain that PO@,, z,),<p* (t*, 5+)-i- a + x, and since 
a and x are arbitrarily small, if g is fairly large, we have the inequality 

P" (L s*) < P* (L 2*) {6.6) 

We obtain the opposite inequality as follows, It follows from (6,l) that when q > k (a), 
we have 

P (t*, z** A,) > P* (t*, %) -a (6.7) 

By the definition of P(t,, x9, A,) (3.6) it is possible to indicate for any g>O a non- 
predicting stochastic program u*(-) such that whatever the non-predicting stochastic program 

@ (-), the inequality 

Ii w(*) (., u (.f. U* (m)) If 2 P (t,, **, A,) - 6 (6.8) 

holds. Then from (6.7) and (6.8) when q> k(a) we have 

y (zO it, I * 1 Sl) > p” @*, I*) - x (8.4) 

( 1 ~o(t)[x”[t]-~(t)l/“~l(dt~jf’~ ?p0(1*,5*)---x (6.5) 
IL 01 
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11 w(l)(*, u (*), v* (*)) II > P* e*, 5+) - a - 5 

In the stochastic differential equation (3.2) we put v(e)= v+(m) and construct the 
sample u"[I, [.I@, 01 of the control u along the partitioning steps Ao{t,} on the basis of 
the optimal strategy u"(.) of the first player, assuming that when tj a t < tj+lv i = 19 . . .Y 4 

If [tj [*I t~+lt 0) = uoA(tj* I8 (tj* *t u”(‘)v v* (‘)I, E, 
This sample, taking (3.4) into account, can be treated as the control formed on the basis 

of some stochastic non-predicting program u: (.). The inequality (6,9) holds for that 
program. But as regards the property of optimal strategy u"(t, w, E) /l/ for any x>O we can 
indicate E(X)> 0 and s(e, xl> 0 such that the measurable application of interference 
(including any application r,[t,[.)f?, o) formed on the basis of the stochastic non-predicting 

program n* (e)), the inequality 

y (WO it, i-1 61) < p” (t*, 5*) + x (6.10) 

will hold, provided e<e(~) and the partitioning step S(q) does not exceed 6(e,~). Then, 
selecting e< e(x) and assuming in the partitioning that Ap {t,) q > max {k (a), [e - &l/6 (e, 
x)), we have besides the inequality (6.91, in conformity with (6.10), for almost applications 
v* It* I.1 6, 0) the inequality 

( 1 lo(t!lw(t,o,a*"(.),~~*(.))- Y(t)l12~(dt))~‘<p”(t*,s*)+X (6.H) 
IL. 81 

Averaging (6.11) over oEQ, we obtain 

II ff+) (-9 u*O (-L v* (.N II < PO e*, 21) + x (6.12) 

Comparing (6.9) and (6.12) we have P' (trl r*) < PO (t*, z+)+ x-t a-l- c, and, consequently, 

P* (t*, r*) < P0 (t*? r*). Taking into account (6.61, we find that P" 0.9 2.) = PO (L s*). This 

equation can be derived for any position {t+, x,,} and for any sequence of partitioning A, UjJ 
for which the limit (6.1) exists. This limit always agrees, as proved, with the payoff of 
the game p" (t*, z,J. This proves that the limit (3.7) exists and is equal to the payoff of 
the game. The theorem is proved. 

From that theorem and inequalitites (6.3) and (6.5) and equations (4.8) and (5.4) we 
obtain the formula for calculating the payoff of the game. 

k 'j+l 

(6.t3) 

C (d v)>} dz - s @#n(t) a Y(t))pWl ’ 
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